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Dear Dr. Roberts and Reviewers, 

 

Thank you for your time and thoughtful feedback. We have crafted the itemized 

responses to your comments as below. 

 

Responses to Reviewer #1 
Zhou et al developed network-based methodologies to identify SARS-CoV-2 

pathogenesis, disease manifestations, and COVID-19 therapies. They incorporated 

SARSCoV-2 virus-host protein-protein interactions, transcriptomics, and proteomics into 

the human interactome. Network proximity measure was used to identify the underlying 

pathogenesis for broad COVID-19-associated manifestations. Multi-modal analyses of 

single-cell RNA-seq data identified the co-expression pattern of ACE2 and TMPRSS2 in 

absorptive enterocytes from the inflamed ileal tissues of Crohn's disease patients 

compared to uninflamed tissues, revealing shared pathobiology by COVID-19 and 

inflammatory bowel disease. Integrative analyses of metabolomics and transcriptomics 

(bulk and single-cell) data from asthma patients indicated that COVID-19 shared 

intermediate inflammatory endophenotypes with asthma. By combing network-based 

prediction and propensity score matching observation study of 18118 patients from a 

COVID-19 registry, the authors identified that melatonin was associated with 64% 

reduced likelihood of a positive lab test for SARS-CoV-2 and can have better efficacy 

than angiotensin II receptor blockers or angiotensin converting enzyme inhibitors for 

treating SARS-CoV-2. However, details about how to identify the differential expressed 

genes, PPI-networks and drug-target network construction, and single-cell RNA-seq 

analysis are missing; the rationale about the construction of PanCoV-PPI and the 

network proximity measure need to be clarified. Most of the results are computational 

discoveries. It may provide valuable insight if the following concerns are addressed. 

Response: We thank the Reviewer for the great summary and constructive comments. 

We have intensified the rigor of our computational analysis and performed new 

experiments to meet the criticisms raised. 



1. Details about the RNA-seq data analysis are missing. I am not sure how the authors 

generated SARS2-DEP. For example, which samples in GSE147507 are used to 

identify differentially expressed genes? Which samples are used as controls? What kind 

of software is used to analyze those samples? How to identify differentially expressed 

genes? The same problem arises elsewhere in the manuscript. 

Response: We added S1 Table for a list of all the data sets used in this study. We 

have also added more details for the bioinformatics processing of each data set: 

(page 35) “SARS2-DEG. In the original study, the primary human bronchial epithelial 

cells were infected with SARS-CoV-2 for 24 hours. The transcriptome profiles of 

infected (3 replicates) and uninfected cells (3 replicates) were characterized, and the 

fold change (FC) and false discovery rate (FDR) for each gene were calculated by 

DESeq2 and provided in the original study. We applied a cutoff of |logFC| > 0.5 and 

FDR < 0.05 to identify the differentially expressed genes. 
SARS2-DEP. As described in the previous study, human Caco-2 cells were infected 

with SARS-CoV-2 for up to 24 hours. Proteomics assays of the infected and uninfected 

cells were measured at 24 hours in triplicates. We used the results at 24 hours, as the 

original study showed most differentially expressed proteins at 24 hours. The P values 

were computed using two-sided unpaired Student’s t-test with equal variance assumed 

in this study. We converted the P value to FDR using the “fdrcorrection” function from 

the Python package statsmodels v0.11.1 and used a cutoff of FDR < 0.05 to identify the 

differentially expressed proteins.” 

(page 42) “Differential expression of three comparisons, severe vs. control, mild vs. 

control, and severe vs. mild were performed using the GEO2R function 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) [135]. In GSE63142 [64], bronchial epithelial 

cells of 27 control samples, 72 mild asthma samples, and 56 severe asthma samples 

were obtained by bronchoscopy with endobronchial epithelial brushing. In GSE130499 

[65], bronchial epithelial cells of 38 control samples, 72 mild asthma samples, and 44 

severe asthma samples were available by bronchoscopy with endobronchial epithelial 

brushing as well. The differential expression analysis was performed by defining the 

groups in GEO2R first, then by selecting the two groups to compare. Genes with |logFC| 

> 0.5 and FDR < 0.05 were considered significantly differentially expressed.” 



Reference for Comment #1 

[135] Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: 
archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41(Database 
issue):D991-5. Epub 2012/11/30. doi: 10.1093/nar/gks1193. 

 

2. In line 194 of page 10, the authors mentioned that "For cancer, the driver genes for 

pan-cancer and individual cancer types were retrieved from the Cancer Gene Census 

[34] and a previous study [35]. For autoimmune, pulmonary, neurological, 

cardiovascular, and metabolic categories, we extracted their associated genes/proteins 

from the Human Gene Mutation Database" I am not sure how those genes were 

retrieved from corresponding databases? Did the authors use any keywords for 

searching? 

Response: For somatic driver genes in cancer, we defined a driver gene if a gene had 

significantly enriched driver mutations based on whole-genome or whole-exome 

sequencing data or reported experimental data from the Cancer Gene Census (Sondka 

et al., Nature Review Cancer 2018) or the original publications from The Cancer 

Genome Atlas (TCGA, https://portal.gdc.cancer.gov). 

For autoimmune, pulmonary, neurological, cardiovascular, and metabolic 

categories from the Human Gene Mutation Database (HGMD) (Stenson et al., Human 

Mutation 2003), we defined a disease-associated gene if a gene has at least one 

disease-associated mutation in original publications provided in HGMD. HGMD is a 

well-documented disease gene database and we downloaded the whole database for 

data analysis and extraction by using the well-documented disease ontology terms 

(Bello et al., Dis Model Mech 2018). Thus, we don’t need to use keywords from HGMD 

database interface search as it may generate data incompleteness as a disease has 

multiple Ontology terms. 

We have added more details in S4 Table, including the data sources, number of 

genes, mutations associated with the disease, and terms for identifying diseases in the 

HGMD. We also added these details in page 36 of the revised manuscript. 
 

References for Comment #2 
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3. In line 675 of page 31, the authors mentioned that "The final human protein-protein 

interactome used in this study included 351,444 unique PPIs connecting 17,706 

proteins". However, would the authors put those results in their GitHub page for the 

reader's reference? Several methods adopted are described as "as described in our 

previous study". Some statistics/overview of the network features/methods, although 

published somewhere else, should be provided for a better understanding of the 

proposed methods. For example, how did the authors build human protein-protein 

interactome? 
Response: We have uploaded the human protein-protein interactome to the GitHub 

page. The interactome was built by combining PPIs with one of the five types of 

evidences from 18 bioinformatics databases or published resources as mentioned in the 

Method section: Building the human protein-protein interactome (page 40). The 

source and experimental evidence type of each PPI can be found in the revised 

Methods section and the uploaded file in the GitHub page (https://github.com/ChengF-

Lab/COVID-19_Map). We have also added basic statistics and a visualization of the 

human protein interactome in S19 Fig and Extended Figure 1. 



 
 

Extended Figure 1. Overview of the human protein interactome. Cytoscape 3.7.1 was used 
for the visualization and for generating the statistics. Clustering coefficient (ranges from 0 to 1) 
measures the extent to which the nodes in the network tend to cluster together. Network 
centralization (ranges from 0 to 1) measures the extent to which the topology resembles a star. 
Network density (ranges from 0 to 1) shows how densely the nodes are connected in the 
network. Network heterogeneity shows the tendency of the network to contain hub nodes. 

 

4. What are active comparator design and PS adjustment? 

Response: Active comparator design is a state-of-the-art pharmacoepidemiologic 

analysis to validate the drug-disease outcome using electronic patient data, as 

described in our previous study (Cheng et al., Nature Communications 2018). For active 

comparator design, we used angiotensin II receptor blockers (ARBs) or angiotensin-

converting enzyme inhibitors (ACEIs) as comparators, as both ARBs and ACEIs were 

not associated with risk of SARS-CoV-2 infection in several recent studies 

(Vaduganathan et al., N Engl J Med 2020; Jarcho et al., N Engl J Med 2020; Mehta et 

al., JAMA Cardiology 2020). In addition, a recent study showed that inpatient use of 

ACEI/ARB was associated with lower risk of all-cause mortality compared with 

ACEI/ARB non-users hospitalized COVID-19 patients with hypertension (Zhang et al., 

Circ Res. 2020). Altogether, these reports provide evidence that ARBs and ACEIs are 



gold-standard comparators for propensity score (PS)-matched active comparator design 

studies as described (Cheng et al., Nature Commun 2018). We used propensity score 

(PS) to adjust for age, sex, race, smoking history, and various disease comorbidities 

(coronary artery disease, diabetes, hypertension, and COPD) during all drug-outcome 

analysis, including active comparator design observations. 
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5. How did the authors obtain the experimentally validated drug-target network? 

Response: We collected physical drug–target interactions from six sources, including 

DrugBank, Therapeutic Target Database, PharmGKB, ChEMBL, BindingDB, and 

IUPHAR/BPS Guide to PHARMACOLOGY. We only retained those drug-protein pairs 

where the binding affinities (including Ki, Kd, IC50, or EC50) were ≤ 10 μM and the human 

protein has unique “reviewed” accession number in the UniProt database. This strategy 

of building experimentally validated drug-target network has been widely used in our 

previous studies (Cheng et al., Nature Communications 2018, 2019a and 2019b). 
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6. Source code and supporting data cannot be found from the Github link provided by 

the authors. 

Response: We apologize that the GitHub link was not shown correctly in the original 

manuscript. We have uploaded the code and supporting data to the GitHub page: 

https://github.com/ChengF-Lab/COVID-19_Map 

 

7. In line 138-142, the authors mentioned that "PanCoV-PPI (Fig. 2B) and four other 

data sets (SARS2-139 DEG, SARS2-DEP, HCoV-PPI, and SARS2-PPI) (S6 Fig) were 

more likely to be highly connected (high degree or connectivity) in the human PPI 

network, including several hubs, such as JUN, XPO1, MOV10, NPM1, VCP, and 

HNRNPA1". According to Fig. 2B and S6, I cannot see anything supporting data to 

explain that JUN, XPO1, MOV10, NPM1, VCP, and HNRNPA1 are the hubs. 

Response: We have revised the Supplemental tables (S2 Table) of the genes from the 

five SARS-CoV-2 gene/protein sets to include their Entrez ID, symbol, lung expression 

specificity, degree (connectivity) in the human interactome, degree in the subnetwork of 

this data set, dN/dS ratio, and evolutionary rate ratio. We changed the original text to 

“Several hub genes, such as JUN, XPO1, MOV10, NPM1, VCP, and HNRNPA1, have 

the highest degree (connectivity) in the PanCoV-PPI network (S2 Table).” in pages 8 

and 9 of the revised manuscript. 

 

8. The authors performed functional enrichment analyses for five different PPIs, i.e., 

SARS2-DEG, SARS2-DEP, HCoV-PPI, SARS2-PPI, and PanCoV-PPI, generated from 

transcriptomic and proteomic data of SARS-CoV-2 as well as literature-based virus-host 

protein-protein interactions. They found different PPIs differ considerably in terms of 



enriched pathways, and then claimed "These observations suggest that these different 

SARS-CoV-2 data sets capture complementary aspects of the biological and cellular 

states of the viral life cycle and host immunity". However, many factors can cause the 

complementary effects. For example, 1. These data are derived from different cells or 

tissues, and not representative. 

Response: We utilized SARS-CoV-2 virus-host PPIs and differentially expressed 

genes/proteins derived from different cells or tissues, as single cell lines have limitations 

for COVID-19 drug testing. For example, two recent studies suggested that chloroquine 

or hydroxychloroquine showed ideal antiviral activities in African green monkey kidney 

cells (VeroE6) but not in a model of reconstituted human airway epithelium or 

TMPRSS2-positive lung cell line Calu-3 (Maisonnasse et al., Nature 2020; Hoffmann et 

al., Nature 2020). These studies showed that cell lines mimicking important aspects of 

respiratory epithelial cells should be used when analyzing the antiviral activity of drugs 

targeting host cell functions.  

Although SARS2-PPIs identified by Gordon et al. (Nature 2020) have 332 SARS-

CoV-2 specific PPIs, all PPIs were tested in VeroE6 and several key PPIs (including the 

ACE2-spike protein) were lost in this dataset. We therefore collected differentially 

expressed genes (primary bronchial epithelial cells) and proteins (human Caco-2 cells) 

in diverse SARS-CoV-2 infected cell lines to overcome the limitations of VeroE6. We 

agree with the Reviewer that PPI data and differentially expressed genes/proteins in 

different cell lines or tissues may contain false positives as well. We have 

acknowledged this limitation and have added more explanations on page 30 of the 

revised manuscript. 
 

References for Comment #8 
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9. How did the authors perform functional enrichment analysis for SARS2-PPI and 

HCoV-PPI? 

Response: We have added the detailed description (page 37) for Functional 
enrichment analysis: we used the online tool Enrichr (Kuleshov et al., Nucleic Acids 

Res 2016) and examined the enrichment of pathways from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Gene Ontology (GO) biological process.  

 
Reference for Comment #9 
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10. The differential expressed genes identified from transcriptome profiles can be very 

different from proteomic data. 

Response: We agree that differentially expressed genes identified from transcriptomic 

profiles can be very different from proteomic data. Due to the disease heterogeneities of 

COVID-19 (Gupta et al., Nature Medicine 2020), we posited that combining 

transcriptome profiles and proteomics data from diverse COVID-19 relevant cell lines or 

tissues may provide complementary, molecular information to overcome disease 

heterogeneities of COVID-19. We have added more explanations in the revised 

manuscript (page 30). 
 

Reference for Comment #10 
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11. In Figs 2C, 2D, and 2G, what is the physical meaning of the ratio of nonsynonymous 

to synonymous substitutions (dN/dS) and evolutionary rate ratio? 



Response: We calculated the nonsynonymous and synonymous substitution rate ratio 

(dN/dS ratio) (Hirsh et al., Mol Biol Evol. 2005) and the evolutionary rate ratio (Bezginov 

et al., Mol Biol Evol. 2013) as described in our previous study (Cheng et al., Mol Biol 

Evol. 2014). A dN/dS ratio below, equal to, or above 1 suggests purifying selection, 

neutral evolution, or positive Darwinian selection, respectively (Yang et al., Trends Ecol 

Evol. 2000). The evolutionary rate ratio was computed using the criterion that a ratio >1 

indicates a fast rate and a ratio <1 indicates a slow rate (Bezginov et al., Mol Biol Evol. 

2013). We have added these details in page 37 of the revised manuscript. 
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12. In line 130 of page 7, the authors mentioned that "further compiled four additional 

virus-host gene/protein networks identified by different methods for comparisons". 

However, I am not sure how those virus-host gene/protein networks are identified, 

details regarding how to generate those networks and relevant references are missing. 

Response: We have added a new Method section and S3 Table for these gene/protein 

sets. 

“Collection of four additional virus-host gene/protein networks 
To characterize the SARS-CoV-2 data sets, we downloaded four virus-host 

gene/protein networks for comparisons from previous studies: (1) 900 virus-host 

interactions identified by gene-trap insertional mutagenesis connecting 10 other viruses 

and 712 host genes [27]; (2) 2,855 virus-host interactions identified from RNA 

interference (RNAi) connecting 2,443 host genes and 55 pathogens [27]; (3) 579 host 



proteins mediating translation of 70 innate immune-modulating viral open reading 

frames (viORFs) [34]; and (4) 1,292 host genes identified by co-immunoprecipitation 

and liquid chromatography-mass spectrometry (Co-IP+LC/MS) that mediate influenza-

host interactions [35]. All details for those four virus-host gene/protein networks were 

provided in S3 Table.” 
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13. The network proximity measure was used to measure the distance of two 

genes/proteins in a protein-protein interaction network, however, the importance of the 

centrality of the nodes/proteins in the PPI network was ignored. 

Response: We thank the Reviewer for this good point. We have calculated the 

eigenvector centrality of the genes in the asthma-COVID-19 and IBD-COVID-19 

networks and added the results to Fig. 5B and Fig. 6I. We found that the highlighted 

genes (such as IRAK3 and ADRB2) in the original manuscript have relatively high 

eigenvector centralities (top 5 and top 2, respectively) compared to other genes in the 

networks (Fig. 5B and Fig. 6I), which is consistent with our network proximity-based 

findings. We have added these new findings and more explanations in the revised 

manuscript (page 42). 

 

14. The authors mentioned that "We next performed network-based drug repurposing 

using the existing knowledge of the drug-target network." and "Using our state-of-the-art 

network proximity framework, we measured the "closest" proximities of nearly 3,000 



drugs". However, details about the drug-target network, the network proximity 

framework, and the nearly 3,000 drugs are missing. 

Response: We have uploaded the network proximity results of the 3000 drugs to the 

GitHub page and provided as S6 Table as well. The details of the construction of the 

drug-target network and network proximity measure are added to the revised Methods 

section. The network proximity codes are available in this GitHub repository: 

https://github.com/ChengF-Lab/COVID-19_Map 

 

15. The authors then computationally found 34 drugs that are associated with SARS-

CoV-2 data sets, how did the authors rank those 3,000 drugs? how many of those 34 

drugs are being tested, or have been tested in clinical trials and have positive effects for 

COVID-19 patients? The authors validated the efficacy of melatonin, one of those 34 

drugs, on COVID-19 patients using their medical records. I am not sure if melatonin was 

ranked as the top-one among those 34 drugs? Not sure what are the differences 

between the drug-repositioning method proposed in this paper and in the authors' 

previous publication (ref 27), which used a similar network-based approach. 

Response: We selected drug candidates using subject matter expertise based on a 

combination of factors: (i) strength of the network-based and bioinformatics-based 

predictions (a higher network proximity score [S7 Table] and significant GSEA score); 

(ii) literature-reported antiviral activities or ongoing clinical trial information; (iii) 

availability of sufficient patient data for meaningful evaluation (exclusion of infrequently 

used medications) from our COVID-19 registry database; and (iv) well-defined antiviral 

mechanisms-of-action (such as anti-inflammatory or immune modulators). Applying 

these criteria resulted in 34 drug candidates. Among 34 drug candidates, 16 drugs have 

reported antiviral effects and 8 drugs are in clinical trials for COVID-19 (5 clinical trial 

drugs in original submission). We have added all evidence for 34 drugs in S7 Table and 

add more explanations in the revised manuscript (page 21). 

Among 34 drugs, melatonin is not the top-one candidate, but it is on top-ranked 

drug candidate. Several very top-ranked drugs (such as cancer drugs) are infrequently 

used medications (under-power) in our COVID-19 registry database, so they were 

excluded from our patient-based data validation analyses. We therefore selected two 



top-ranked drugs, melatonin and carvedilol, which have enough number of patient data 

points to allow meaningful analysis of drug-disease outcome relationship with COVID-

19 in our cohort. We have added more explanations in the revised manuscript. 

 

16. I am not sure how cell types in Figs 5C, 5F, 6C, and 6D are annotated? Are there 

any control samples in the single-cell RNA-seq analysis? 

Response: The lung and primary human bronchial epithelial cells were from normal 

tissues and have cell types annotated in the original study (Lukassen et al., EMBO J. 

2020). The Crohn’s disease cells were from both inflamed and uninflamed (as controls) 

regions from the ileal samples of 8 patients. Their cell types were annotated using the 

marker genes from the original paper (Martin et al., Cell 2019) and a recent meta-

analysis paper using the same data set (Zhang et al., Gut. 2020). The expression of 

these marker genes is provided in S20 and S21 Figs. We have added these details in 

the revised manuscript (page 43). 
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17. In Fig7.B there are four different bars with different colors, what does the PS-

matched model 1 and PS-matched model 2 mean? There are two different OR model1s 

indicated by different colors, however, are these OR model1s independent? Besides, 

are four different models (variables) in Fig7.B independent? 

Response: We have revised the original Fig. 7B as the new Fig. 8. We added more 

explanations in the revised Fig. 8 legend and the revised manuscript for four different 

models we used. To be specific, we revised the Method section as follows (page 47): 



“Propensity score (PS) was used to match patients to reduce various confounding 

factors. Four models, from less to more stringent in terms of patient matching and odds 

ratios (OR) adjustment, were performed: (1) model 1 was matched using age, gender, 

race, and smoking without adjustment for the odds ratio; (2) model 2 was matched 

using age, gender, race, and smoking, and the odds ratio of COVID-19 was adjusted by 

age, gender, race, and smoking; (3) model 3 was matched using age, gender, race, 

smoking, coronary artery disease, diabetes, hypertension, and COPD without 

adjustment for the odds ratio; and (4) model 4 was matched using age, gender, race, 

smoking, coronary artery disease, diabetes, hypertension, and COPD, and the odds 

ratio of COVID-19 was adjusted by age, gender, race, smoking, coronary artery 

disease, diabetes, hypertension, and COPD.” 

 

 

Responses to Reviewer #2 
This paper addresses the network interpretation of higher risk of morbidity and mortality 

of COVID-19 patients with one or more other common diseases utilizing integrative 

network analysis of transcriptomics, proteomics, and human interactome. Utilizing bulk 

and single cell RNA-seq data together with differential metabolite information (only for 

asthma patients), the authors provided insights on shared pathobiology of COVID-19 

patients with asthma and inflammatory bowel diseases. The authors of this paper 

utilized their earlier developed in-silico drug repurposing approaches on COVID-19 

clinical registry database and prioritized existing FDA-approved drugs as potential 

therapeutic candidates. Overall authors utilized all possible data sources and network-

inference state of the art methods in their integrative analysis. The question remains 

however, with regard to whether these methods are good enough to yield substantial 

predictions. Below are the major concerns that need to be carefully further addressed 

before this paper can be considered for publication. 

Response: We thank the Reviewer for the great summary and overall positive 

comments. We have intensified the rigor of our computational analysis and performed 

new extensive experiments to specifically address these critiques. 

 



1. One intrinsic limitation of the authors' method is that directionalities are in general not 

being taken into account in the various networks they built and/or used. For example, it 

seems that whether a viral protein activates or inhibits a host protein, or whether a gene 

is upregulated or downregulated in a disease is not being considered, and this can 

make the interpretation of results difficult or give rise to ambiguities. As an example of 

this issue, although the authors have identified proximity between the SARS-CoV-2 

network and the asthma network with several shared nodes (Fig. 5A), when comparing 

the differential expression (DE) profiles in asthma to that in SARS-CoV-2 infection (Fig. 

5B), there does not seem to be significant concordance in terms of the direction of DE. 

Notably, IL6 increased in SARS-CoV-2 infection but decreased in asthma. Will the same 

findings still hold if the directionality is taken into account properly? We think that this is 

an important issue that should be addressed appropriately. 

Response: We agree with the Reviewer that it is important to take into account the 

directionalities during human interactome network analysis. However, to date, there are 

no comprehensive SARS-CoV-2 virus-host PPIs that have directionalities, such as a 

viral protein activates or inhibits a host protein in a systematic way. For the human 

interactome, we don’t have a systematic human protein-protein interactome with well-

documented directionalities for each protein-protein interaction as well. In addition, a 

previous study has shown that integration of the directionality of the human interactome 

didn’t change the results of network proximity measure (Menche et al., Science 2015). 

To respond the Reviewer’s concerns, we have re-computed the network 

proximity of up- or down- regulated genes in SARS2-DEG and differentially expressed 

genes (DEGs) from the two asthma data sets. A total of four combinations was 

performed for each asthma data set: asthma-DEG-up + SARS-DEG-up, asthma-DEG-

up + SARS-DEG-down, asthma-DEG-down + SARS-DEG-up, and asthma-DEG-down + 

SARS-DEG-down. We found more significant network proximity (lower z-score and p-

value) when we incorporated the directionalities of the DEGs. We have added these 

new findings and more explanations in the revised manuscript (page 33) (S17 Fig, 

Extended Figure 2). 



 
Extended Figure 2. Network proximity analysis of asthma and COVID-19 taking into 
consideration the directionalities of the differential gene expression. The up- and down- 
expressed genes in the two asthma data sets (GSE63142 and GSE130499, severe vs. control) 
were computed against the up- and down- expressed genes from the SARS2-DEG data set. 
Overall, the results show more significant network proximities and smaller z scores than when 
the direction is not considered as in Fig 4. 

 
Reference for Comment #1 

Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. Disease networks. 
Uncovering disease-disease relationships through the incomplete interactome. Science. 
2015;347(6224):1257601. Epub 2015/02/24. doi: 10.1126/science.1257601. 

 

2. The different coronavirus datasets were from different cell types, for example the 

SARS2-DEG was based on data in primary bronchial epithelial cells, while the SARS2-

DEP was based on Caco-2 colorectal cancer cell line, and the SARS2-PPI was based 

on HEK273T cell line. Further, the genes associated with each disease should all act in 

a context-specific manner in the corresponding tissue types where each of the diseases 

manifest. It's questionable whether the network within one context can still largely hold if 

transferred to a different context (e.g. tissue type). The authors have implicitly studied 

the related issue of cell/tissue type-specific expression. If the tissue type-specific 

expression information is explicitly used to refine the various SARS2 network separately 

and specifically for each tissue type, will the findings on proximity with disease networks 

still hold? This potentially serious confounding factor cannot be ignored and needs to be 

carefully addressed. 



Response: We utilized SARS-CoV-2 virus-host PPIs and differentially expressed genes 

and proteins derived from different cells or tissues as single cell line has limitations for 

COVID-19 drug functional test. For example, two recent studies suggested that 

chloroquine or hydroxychloroquine showed ideal antiviral activities in African green 

monkey kidney cells but not in a model of reconstituted human airway epithelium or 

TMPRSS2-positive lung cell line Calu-3 (Maisonnasse et al., Nature 2020; Hoffmann et 

al., Nature 2020). These studies showed that cell lines mimicking important aspects of 

respiratory epithelial cells should be used when analyzing the antiviral activity of drugs 

targeting host cell functions. In this study, we posited that SARS-CoV-2 virus-host PPIs 

collected from different COVID-19 relevant cell lines or tissues may provide 

complementary information for better understanding of pathobiology of COVID-19. 

         We agreed with the Reviewer that the genes associated with each disease should 

all act in a context-specific manner in the corresponding tissue types where each of the 

diseases manifest. However, recent studies have suggested that COVID-19 is a 

systematic disease which has impacts on multiple human tissues and organs (Gupta et 

al., Nature Medicine 2020). We therefore cannot use a single cell type or tissue/organ to 

explore heterogeneities of COVID-19. 

To respond the Reviewer’s concerns, we inspected tissue-specificity of diseases 

using available RNA-sequencing data (v8) across 33 tissue types from GTEx database 

(The GTEx Consortium, Nat Genet. 2013). When we recomputed the network proximity 

as in Fig. 4A using only genes that have positive tissue specificities in the associated 

disease, we noticed overall consistent results with some noticeable differences (S15 
Fig, Extended Figure 3). We have added these new findings and more explanations in 

the revised manuscript (pages 32 and 33). 
References for Comment #2 

Maisonnasse P, Guedj J, Contreras V, Behillil S, Solas C, Marlin R, et al. Hydroxychloroquine 
use against SARS-CoV-2 infection in non-human primates. Nature. 2020. Epub 2020/07/23. doi: 
10.1038/s41586-020-2558-4. 

Hoffmann M, Mosbauer K, Hofmann-Winkler H, Kaul A, Kleine-Weber H, Kruger N, et al. 
Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020. 
Epub 2020/07/23. doi: 10.1038/s41586-020-2575-3. 

Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al. Extrapulmonary 
manifestations of COVID-19. Nat Med. 2020;26(7):1017-32. Epub 2020/07/12. doi: 
10.1038/s41591-020-0968-3. 



The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 
2013;45(6):580-5. Epub 2013/05/30. doi: 10.1038/ng.2653. 

 
Extended Figure 3. Disease manifestations associated with COVID-19 quantified by 
network proximity measure using tissue-specific genes for each disease. The disease-
associated genes were filtered by their tissue specificity. Tissues considered are shown after 
the disease names. Only genes with positive specificity were retained for the network analysis. 
After filtering, diseases with less than 5 genes were removed from the evaluation. 



3. In the 'Validating drug-outcome relationships on COVID-19 using patient data' under 

Results section, authors utilized their earlier developed approaches of network 

proximity, GSEA analysis and PS-score matching methods to prioritize the drug 

candidates. The basis for selection of the final drug melatonin seems weak. The authors 

didn't mention anywhere how many drugs they finally considered in their analysis and 

with what frequency each of them was used by the patients. 

Response: We selected final drug candidates for patient database validation using 

subject matter expertise based on a combination of factors: (i) strength of the network-

based and bioinformatics-based predictions (a higher network proximity score and 

significant GSEA score); (ii) literature-reported antiviral activities or ongoing clinical trial 

information; (iii) availability of sufficient patient data for meaningful evaluation (exclusion 

of infrequently used medications) from our COVID-19 registry database; and (iv) well-

defined antiviral mechanisms-of-action (such as anti-inflammatory or immune 

modulators. Applying these criteria resulted in 34 drug candidates from over 3,000 

screened drugs. Among 34 drug candidates, we selected two drugs, melatonin and 

carvedilol, have enough patients (Table 1) for a meaningful analysis of the odds ratio of 

COVID-19 in our cohort. We have discussed the limitation of patient database validation 

on commonly used medications only in the revised Discussion section (page 31). 

 

4. It is not clear whether the drugs (including melatonin) are being taken by the patients 

before or at the time of being tested positive, if before then what is the time interval 

between the drug consumption and testing, for how long have the patient been taking 

the drug, and how such information are being used in terms of selecting the samples to 

include in the analysis, as well as in the analytical model during the analysis. Such 

details are critical for the interpretation of the results, and an overview should be 

provided in the main text (Results or Methods) with comprehensive additional details in 

the Supplementary Materials. 

Response: We collected medication information that patients were actively taking at the 

time of testing via the REDCap tool. We have added these details in the revised 

Methods section (page 46). 



In this study, we utilized two types of drug-outcome observational studies: 1) 

melatonin users versus the same number of non-melatonin users matched by 

propensity score; and 2) active comparator design: melatonin users versus the same 

number of comparator users matched by propensity score as well. We used angiotensin 

II receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors (ACEIs) as two 

comparators as both ARBs and ACEIs were not associated with risk of SARS-CoV-2 

infection in several recent studies (Vaduganathan et al., N Engl J Med 2020; Jarcho et 

al., N Engl J Med 2020; Mehta et al., JAMA Cardiology 2020). To be specific, we used 

propensity score to adjust for age, sex, race, smoking history, and various disease 

comorbidities (coronary artery disease, diabetes, hypertension, and COPD) during all 

drug-outcome analysis, including active comparator design. We agreed with Reviewer 

that other drug information (such as the time interval between the drug consumption 

and testing, and dose) are important factors as well. We have discussed these 

limitations and more explanations in the revised manuscript (pages 24, 25, 29, and 31). 
 

References for Comment #4 

1. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-
Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 
2020;382(17):1653-9. Epub 2020/04/01. doi: 10.1056/NEJMsr2005760. 

2. Jarcho JA, Ingelfinger JR, Hamel MB, D'Agostino RB, Sr., Harrington DP. Inhibitors of the 
Renin-Angiotensin-Aldosterone System and Covid-19. N Engl J Med. 2020;382(25):2462-4. 
Epub 2020/05/02. doi: 10.1056/NEJMe2012924.  

3. Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, et al. Association of Use of 
Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Testing 
Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. Epub 2020/05/06. doi: 
10.1001/jamacardio.2020.1855. 

 

5. Whatever drug list authors provided in Figure 7A, it is very obvious that all drugs were 

not used by all the patients in similar frequency. Melatonin is a very common drug 

compared to other drugs listed in that figure. So all these statistical tests are not at all 

applicable for all these drugs. In other words, this validation is not very useful in the 

COVID-19 patients' context, where intake of medicines is not homogeneous among 

patients. 



Response: We agreed with the Reviewer that pharmacoepidemiologic validation is 

limited for commonly used drugs, like melatonin and carvedilol we studied. However, 

this is a general limitation for all pharmacoepidemiologic validation for all human 

diseases, not COVID-19 specific limitation. Based on the current growth curve of our 

COVID-19 patient database at the Ohio and Florinda hospitals, we may be able to test 

more drugs in the near future by significant increase of patients from our COVID-19 

registry database and our integrative team are actively working on it. We have added 

more explanations for this general limitation in the revised manuscript (page 31). 

 

6. Can the authors prioritize drugs in a more context-specific manner rather than one 

drug for all? Likewise, can they prioritize drugs in a more similar group of patients, like 

for asthma patients or for IBD patients or for hypertension patients? 

Response: We thank the Reviewer for this great point. We have performed new 

subgroup analysis for melatonin and carvedilol in asthma, diabetes, and hypertension 

patients. We didn’t inspect IBD patients as it has low statistical power by small number 

of IBD patients in our current COVID-19 registry database. The results show that 

different subgroups react differently to melatonin or carvedilol intakes in terms of the 

likelihood of a positive laboratory test result for SARS-CoV-2 (S12 Fig, Extended 
Figure 4). For example, the protective effect of melatonin was more significant in 

diabetes patients (OR = 0.52, 95% CI 0.36-0.75) than in asthma patients (OR = 0.61, 

95% CI 0.36-1.06) or hypertension patients (OR = 0.80, 95% CI 0.61-1.05). In addition, 

we also checked efficiency of melatonin and carvedilol for black Americans and white 

Americans separately (Fig. 8C and 8D, S13 Fig, Extended Figure 5). We found that 

the protective effect of melatonin was more significant in the black Americans (OR = 

0.48, 95% CI 0.31-0.75) than in the white Americans (OR = 0.77, 95% CI 0.57-1.04). 

We have added these new results and more explanations in the revised Results section 

(pages 25 and 26). 



 
Extended Figure 4. Patient-based validation of drug repurposing for COVID-19 using 
three different subgroups, (A) asthma, (B) diabetes, and (C) hypertension. Four models 
were evaluated. These models were matched and adjusted using different variables as shown 
in the table. The variable that was used to extract each patient subgroup was not used for 
propensity score matching or odds ratios adjustment. ACEIs, angiotensin-converting enzyme 
inhibitors. ARBs, angiotensin II receptor blockers. 



 
Extended Figure 5. Comparison of the patient validation results of melatonin and 
carvedilol usages in black Americans and white Americans respectively. 

 

7. In many places, the authors just provided some numbers without any biological 

implication. There is no explanation of such variability in numbers or what are the 

biological consequences of those. For example, in Figure 2, the authors presented the 



data for PanCoV-PPI which is a combination of HCoV-PPI and SARS2-PPI. It is well 

known that SARS2-PPI and HCoV-PPI networks are not very similar. In that case, all 

these numbers are not very useful towards the overall theme of the paper. 

Response: We thank the Reviewer for this critique. We agreed with the Reviewer that 

SARS2-PPI and HCoV-PPI networks are not very similar. We combined SARS2-PPI 

and HCoV-PPI networks as we found several significant limitations of SARS2-PPIs. For 

example, SARS2-PPIs are identified from African green monkey kidney cells (VeroE6). 

Two recent studies suggested that chloroquine or hydroxychloroquine showed ideal 

antiviral activities in African green monkey kidney cells (VeroE6) but not in a model of 

reconstituted human airway epithelium or TMPRSS2-positive lung cell line Calu-3 

(Maisonnasse et al., Nature 2020; Hoffmann et al., Nature 2020). In addition, multiple 

well-known PPIs (including ACE2-spike protein) are lost in SARS2-PPIs but are 

included in HCoV-PPI. 

We used HCoV-PPI as pan-coronavirus PPIs as we pursue to identify broad-

spectrum antiviral medications for SARS-CoV-2 and other emerging coronavirus if 

broadly applied of our network medicine framework. We have added more rationale and 

explanation why we combined SARS2-PPI and HCoV-PPI networks in the revised 

manuscript (pages 30 and 31). 

We apologized that we did not provide the detailed explanations for each number 

in our original manuscript as our manuscript was very long. Now, we have added more 

explanations for each number in the revised manuscript based on our sizeable efforts, 

including 8 main Figures, 21 Supplementary Figures, and 7 Supplementary Tables, in 

total 72 pages in main manuscript. 
 

References for Comment #7 
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8. The authors utilized the network proximity measure to evaluate the connectivity and 

closeness of other diseases with COVID-19. It is now well known a variety of underlying 

health conditions are risk factors for covid-19 patients, including children with rare 

diseases, like cerebral palsy or mental conditions. In such scenarios, network proximity 

is not a very useful measure for identifying this high morbidity and mortality risk. What is 

the authors take on that? 

Response: We agreed with the Reviewer that our network proximity analysis only can 

focus on the diseases having well-known genetic information. For children with rare 

diseases, like cerebral palsy or mental conditions, we cannot perform network proximity 

analysis as we lack well-known genes/proteins associated with these conditions. We 

have added discussion about this limitation in the revised manuscript (page 31). 

 

9. We feel that many parts of the writing are inaccurate or confusing and can be 

improved (examples given below). We recommend the authors to further refine the 

writing so that it is easier for the readers to understand: 

(a) Line 214, the authors write "these diseases can be targeted directly or interact with 

the 215 targets of SARS-CoV-2 or other HCoVs." We think it is actually meant that "the 

disease genes can interact with the viral proteins either directly or indirectly via another 

host protein". 

Response: We changed this sentence as suggested: “Shown in Fig. 3A, the disease 

genes can interact with the SARS-CoV-2 viral proteins either directly or indirectly in the 

human protein-protein interactome.” (page 12) 

 

(b) Line 228, authors can explicitly mention which 8 comorbidities they are referring to 

here. 

Response: We changed this part to “We found that subjects with several disease 

comorbidities or risk factors have significantly higher risks in severe COVID-19 patients 

(Fig. 3B), including COPD, cardiovascular disease, stroke, diabetes mellitus, chronic 

kidney disease, hypertension, cancer, and history of smoking.” (pages 12 and 13). 

 



(c) Line 293, the term "endophenotype", which has a strict definition, may not be 

appropriate here, the authors may intend to write "molecular profile" or perhaps 

"molecular program". 

Response: We have replaced “endophenotype” with “molecular profile” in the entire 

manuscript. 

 

(d) Line 297, in multi-modal analysis, there is no clear explanation what authors exactly 

did here? There is no clear methodology for their multi-modal analysis in the Methods 

section. 

Response: We added the following explanation in the revised manuscript (page 16) “To 

be specific, we identified the enzymes in the network that are associated with altered 

metabolites in COVID-19 patients. Comparing the DEGs from asthma patients and 

DEGs from COVID-19 patients, we aim to find the common genes/proteins or 

interacting proteins in these patient groups. Using network analyses (degree enrichment 

and eigenvector centrality), we can rank the importance of these genes. Last, we 

examined their expression in the cell types that are more susceptible to SARS-CoV-2 

(expressing more ACE2 and TMPRSS2).” 

 

(e) Line 308, "matching the enzymes of the differential metabolites and the proteins in 

the PPI network", it's not clear whether enzymes for the synthesis, or degradation, or 

any transformation, or transportation, etc. of the metabolites were considered, and it 

seems that this is not explained elsewhere either. 

Response: We have added a new method section to address the question (pages 42 

and 43) “Building the metabolite-enzyme network: We built a comprehensive 

metabolite-enzyme network by assembling data from four commonly used metabolism 

databases: KEGG [137], Recon3D [138], the Human Metabolic Atlas (HMA) [139], and 

the Human Metabolome Database (HMDB) [140]. The metabolite-enzyme network 

contains 60,822 records of 6,725 reactions among 3,808 metabolites and 3,446 genes. 

Four types of enzyme functions were included in the network: biosynthesis, 

degradation, transformation, and transportation.” 
 



References for Comment #e 
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(f) Line 318 "Utilizing two bulk RNA-Seq data sets from asthma patients and healthy 

controls, we identified elevated expression of IRAK3 and ADRB2 in SARS-CoV-2 

infected human bronchial epithelial cells." -- this is confusing. 

Response: We changed this part to “Utilizing two bulk RNA-Seq data sets (GSE63142 

and GSE130499) of asthma patients compared to healthy controls, we identified that 

IRAK3 and ADRB2 had significantly elevated expression (FDR < 0.05) in asthma 

patients. Both genes also have significantly elevated expression SARS-CoV-2 infected 

human bronchial epithelial cells (Fig. 5B).” (page 17) 

 

(g) Line 428 "Validating drug-outcome relationships on COVID-19 using patient data", it 

seems to mean "evidence from the COVID-19 registry data that supports the predicted 

drug repurposing strategies". 

Response: We have changed this section header to “Evidence from the COVID-19 

registry data that supports the predicted drug repurposing strategies” as suggested. 

 

 

Responses to Reviewer #3 
The manuscript by Zhou and colleagues is submitted for consideration for publication to 

PLOS Biology. In this manuscript the authors tried to investigate pathogenesis, clinical 

manifestations and therapies COVID-19 using network medicine approach on clinical 



and multi-omics data. The reason for this study is to understand molecular mechanisms 

of SARS-CoV-2 infection, to compare with other not-infectious diseases and to identify 

FDA-approved drugs as potential COVID-19 drug candidates through network-medicine 

findings and clinical data from a large COVID-19 clinical registry database. The paper 
is well structured and exhaustive in every part, while the integrated approach, the 
authors have used, is original and very interesting. Importantly, this theoretical 

finding might have practical significance via guiding both pharmaceutical and diagnostic 

research with the prospect to identify potential new biological targets. It can be 

recommended for publication upon addressing several concerns into some not clear 

parts.  

Response: We thank the Reviewer for the support. 

 

1. In introduction they report numbers of pandemics, but it needs to insert one or more 

references (e.g. John Hopkins University), while at row 54 they should add other 

references about network based-approach model based on comparative PPI 

interactomes with other HCoV and concept of Disease Map applied to COVID19. 

Response: We have added the references and more explanations about concept of 

Disease Map applied to COVID19 in the revised manuscript. 

 
References for Comment #1 
1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real 
time. Lancet Infect Dis. 2020;20(5):533-4. Epub 2020/02/23. doi: 10.1016/S1473-
3099(20)30120-1. 

2. Pfefferle S, Schopf J, Kogl M, Friedel CC, Muller MA, Carbajo-Lozoya J, et al. The SARS-
coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus 
inhibitors. PLoS Pathog. 2011;7(10):e1002331. Epub 2011/11/03. doi: 
10.1371/journal.ppat.1002331. 

3. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 
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2. in Results they talk about S2 Table, containing "additional virus-host gene / protein 

networks identified by different methods for comparisons", but it is not clear how they 

selected these genes, where these data is from and what purpose it would serve. 



Response: We have added references for the sources of these datasets in the revised 

Method section (page 35) with the revised Supplemental S3 Table (originally S2 table). 

They were used as comparisons to find common and unique network and bioinformatic 

characteristics of SARS-CoV-2. We also added the following sentence “These virus-

host gene/protein networks have been well-characterized and offer high quality data 

sets for comparisons.” (page 8) 

 

3. at page 19 they wrote: "These observations reveal common network relationship 

between COVID-19 and human diseases". In my opinion, this phrase could result 

obvious, due to wide previous literature about COVID19 produced up this moment and 

the pathogenic and molecular similarity with SARS-CoV. 

Response: We have added the following to the limitation (page 31) “Potential literature 

bias of disease-associated genes and the human interactome may also influence our 

findings. For example, well-studied genes in both COVID-19 and other diseases may 

explain the similarity of COVID-19 with other diseases, while the under-studied genes 

associated with both diseases may not be uncovered.” 

 

4. at page 20 they talk about the network-based relationships of the 64 diseases across 

the 6 categories to COVID-19, shown in Fig 4A, taking into account the proximity, Z 

scores and P values, as significance test. However this part results hard to understand: 

firstly, they should report the absolute numbers of how many genes they used for each 

Z-score test and p-value, because different sample size of genes provide the 

strengthness of associations. 

Response: We analyzed the correlation between the z scores and number of genes for 

these five data sets and found that the number of genes is only weakly associated with 

z scores (maximum R2=0.1468). We have added the following to the discussion (page 

27) “The number of genes associated with each disease varies. However, we did not 

notice any significant bias towards the network proximity z scores by different number of 

genes (S14 Fig).” The results are added in S14 Fig and Extended Figure 6. The details 

of the number of genes and sources for each disease are also provided in S4 Table. 



 
Extended Figure 6. Analysis of the effect of the number of genes associated with the 
diseases on the network proximity z scores. Each dot represents a disease (z score versus 
number of genes). No significant bias was observed for the number of genes. The maximum R2 
is 0.1468 from the SARS2-PPI data set. 

 

5. Secondly, they must explain to biological function of genes tested and the pathway 

involved, because it is very difficult to figure out why they found strong significant 

network proximity with attention-deficit / hyperactivity disorder and not with other 

cardiovascular diseases, since vascular damage is one of most featured manifestations 

in severe COVID19 cases, or asthma. 

Response: We thank the Reviewer for this great point. The nervous system and the 

immune system can communicate and affect each other by bidirectional interactions 

(Schiller et al., Nature Reviews Immunology 2020). Recent clinical studies have shown 

that SARS-CoV-2 infection was associated with multiple neurological syndromes 

(Paterson et al., Brain 2020; Cebrián et al., Neurology 2020; Gane et al., Rhinology 

2020). To understand the association of SARS-CoV-2 infection and ADHD in the 

context of human protein interactome, we performed network connectivity analysis and 

found that many ADHD-associated genes are connected to SARS-CoV-2 host genes 



(Extended Figure 7). Using SARS2-DEG, SARS2-DEP, SARS2-PPI, we found that 

PRKN and TAF1 appeared in all three subnetworks, and MTNR1A, EPHA5, GIT1, 

UBE2F, CTNNA3, and TUSC3 appeared in two subnetworks. For example, it has been 

suggested that the copy number variation of PRKN is associated with the genetic 

susceptibility of ADHD (Jarick et al., Mol Psychiatry 2014). 

As for why we didn’t see a strong network proximity association between COVID-

19 and cardiovascular diseases, one potential explanation is that the vascular damage 

is caused by inflammatory adverse effects from SARS-CoV-2 infections. However, the 

cardiovascular disease-associated genes from HGMD are genetics driven findings. 

Another potential reason is tissue specificity of the gene expressions. For example, 

when we filtered the genes by their heart expression before network proximity analysis, 

heart valve disease become significant with SARS2-DEP, SARS2-PPI, and PanCoV-

PPI (S15 Fig, Extended Figure 3). 
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Extended Figure 7. Subnetworks between SARS-CoV-2 host genes/proteins with the 
disease-associated proteins of attention-deficit / hyperactivity disorder. 

 

6. Moreover, for the networks in this figure, it is not clear why they chose sepsis and 

respiratory distress syndromes as example and it could result misleading. 

Response: We chose sepsis and respiratory distress syndromes as two examples as 

these two complications are the main causes of mortality of SARS-CoV-2 infection in 

severe COVID-19 patients. 
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7. at page 28 they analyzed data by a large-scale patient data from the Cleveland Clinic 

COVID-19 patient registry, evaluating the characteristics of melatonin and carvedilol. I 

noted that in SARS-CoV-2 positive patients there was a wide diversity in sample size 

between cases and controls (cases are ~ 2% of controls). I understand it was due to 

availability of COVID19 cases tested, but it should much more report in the limitation 

section. 

Response: We have updated the patient validation results using our latest COVID-19 

registry collected from March 8 to July 27, 2020. Currently there are 8,274 (31%) 

COVID-19 positive patients in the registry of 26,779 subjects, representing over four-

fold increases in the COVID-19 positive patients compared to our original manuscript. 

We have added these new findings in the new Fig. 8 and added more explanations in 

pages 25 and 26 of the revised manuscript. 
 


